s un conjunto infinito de números enteros ordenados en forma de triángulo que expresan coeficientes binomiales. El interés del Triángulo de Pascal radica en su aplicación en álgebra y permite calcular de forma sencilla números combinatorios lo que sirve para aplicar el binomio de Newton.
El Triángulo se construye de la siguiente manera: escribimos el número «1» centrado en la parte superior; después, escribimos una serie de números «1» en las casillas situadas en sentido diagonal descendente, a ambos lados; sumamos las parejas de cifras situadas horizontalmente
(1 + 1), y el resultado (2) lo escribimos debajo de dichas casillas; continuamos el proceso escribiendo en las casillas inferiores la suma de las dos cifras situadas sobre ellas (1 + 2 = 3)...
Las cifras escritas en las filas, tales como: «1 2 1» y «1 3 3 1» recuerdan los coeficientes de las identidades:
Las cifras escritas en las filas, tales como: «1 2 1» y «1 3 3 1» recuerdan los coeficientes de las identidades:
Es más, se puede generalizar para cualquier potencia del binomio: (a+b)
Muy interesante Nayelita.
ResponderEliminar