viernes, 21 de enero de 2011

SUMA DE RIMANN

En matemáticas, la suma de Riemann es un método para aproximar el área total bajo la gráfica de una curva. Estas sumas toman su nombre del matemático alemán Bernhard Riemann.

[editar]Definición

Consideremos lo siguiente:

donde D es un subconjunto de los números reales \mathbb{R}
  • Un conjunto finito de puntos {x0, x1, x2, ... xn} tales que a = x0 < x1 < x2 ... < xn = b
crean una partición de I
P = {[x0, x1), [x1, x2), ... [xn-1, xn]}

Si P es una partición con n elementos de I, entonces la suma de Riemann de f sobre I con la partición P se define como

S = \sum_{i=1}^{n} f(y_i)(x_{i}-x_{i-1})
donde xi-1yixi. La elección de yi en este intervalo es arbitraria.
Si yi = xi-1 para todo i, entonces denominamos S como la suma de Riemann por la izquierda.
Si yi = xi, entonces denominamos S como la suma de Riemann por la derecha.
Promediando las sumas izquierda y derecha de Riemann obtenemos la llamada suma trapezoidal.

1 comentario: