En matemáticas, la suma de Riemann es un método para aproximar el área total bajo la gráfica de una curva. Estas sumas toman su nombre del matemático alemán Bernhard Riemann.
[editar]Definición
Consideremos lo siguiente:
- una función
- donde D es un subconjunto de los números reales
- I = [a, b] un intervalo cerrado contenido en D.
- Un conjunto finito de puntos {x0, x1, x2, ... xn} tales que a = x0 < x1 < x2 ... < xn = b
- crean una partición de I
- P = {[x0, x1), [x1, x2), ... [xn-1, xn]}
Si P es una partición con n elementos de I, entonces la suma de Riemann de f sobre I con la partición P se define como
- donde xi-1 ≤ yi ≤ xi. La elección de yi en este intervalo es arbitraria.
- Si yi = xi-1 para todo i, entonces denominamos S como la suma de Riemann por la izquierda.
- Si yi = xi, entonces denominamos S como la suma de Riemann por la derecha.
- Promediando las sumas izquierda y derecha de Riemann obtenemos la llamada suma trapezoidal.
Nayelita,
ResponderEliminarya se soltaron el pelo. Adelante muchachos.